
Comparing the performance of controllers based on Reinforcement
Learning and Nonlinear Analysis

Arish Alreja, Pavel Komarov, and Prabhudev Prakash

Abstract— Tools from Nonlinear analysis, Optimal Con-
trol and Statistical learning feature prominently in the
analysis and control of complex systems ranging from
robotics to power grids. The motivation for this work was
to compare and contrast these toolsets. We realized this
goal by developing Nonlinear and model-free Reinforce-
ment Learning (RL) controllers for an inverted pendulum
on a cart system, with the control objective of keeping the
pendulum upright.

Both controllers achieve the control objective under
noiseless conditions: The Nonlinear controller achieves the
task perfectly, whereas the RL Controller suffers from
wobble rooted in the quantization noise that arises from
its need for state discretization. Thus, by the standards of
accuracy and efficiency, the Nonlinear controller outper-
forms the RL controller. Finer discretization of state space
produces an RL controller with improved performance but
extends learning time. Interestingly, the RL’s discretization
renders it robust to noise, so it consistently does better
than the NonLinear controller under sufficiently turbulent
conditions.

Our most substantial finding is that Q-values over
the discretized state space approximate the negative of
our analytically-derived Lyapunov Function. Aside from
achieving control objectives, learning Lyapunov Functions
with a stochastic model-free technique can be powerful
and may inform nonlinear controller design for systems
where analytical derivations of Lyapunov Functions are
challenging. Our conclusion is that the tools of Nonlinear
analysis, Optimal Control and Statistical Learning are
complementary, not competing approaches.

I. INTRODUCTION

Nonlinear analysis, Optimal Control and Statistical
learning are ubiquitous in analysis and control contexts.
Robots, neuro-prosthetics, power grids, spacecraft, and
countless other complex systems rely on the theory from
these fields.

Advances in analyzing, modeling, and controlling
Nonlinear Systems have led to significant advances in
solving new, ever-more-challenging controls problems,
while parallel advances in optimization, accompanied by
inexpensive and accessible computational power, have
led to broad adoption of machine learning techniques,
with numerous applications to problems like navigation
or ambulation.

At first glance, the contrast between deterministic
analytic approaches and the approximate nature of prob-
abilistic machine learning models may suggest competi-
tion between the methods. This impression provided the

original motivation for this project.
Comparing and contrasting the performance of a

nonlinear and a learned controller demanded that we
combine knowledge from ECE 6552 with unfamiliar
material well outside the scope of the course.

We chose to use Reinforcement Learning (RL) as
the method for our learned controller because unlike
most machine learning algorithms, RL is fairly general-
purpose and can be initialized simply, without the re-
quirement for millions of training examples. Apart from
initializing state spaces and reward functions along with
environmental interaction, it demands minimal (if any)
customization/programming for individual problems. A
crucial difference between RL and Nonlinear Analysis
techniques is that it can be model-free, that is have no
fore-knowledge of how the external world works and de-
vote no internal memory to guessing the environment’s
state. By contrast, most analytic techniques are entirely
reliant on a model of the system dynamics.

The mathematical underpinnings of RL are non-
trivial, and thorough understanding is required in order
to use the method effectively. To give ourselves time to
understand this half of our project and to ensure that
we had time to go beyond building a controller and
focus on a deeper comparative analysis, we chose a well-
understood Nonlinear System: the inverted pendulum on
a cart. The RL algorithm is fairly generic and can scale
without much need for customization to more complex
systems.

Our experience validated some of our initial no-
tions but also exposed us to new insights about how
these different approaches to studying and controlling
complex systems might interact with each other in a
complementary way.

II. THE INVERTED PENDULUM ON A CART

Before we could begin leveraging tools from Nonlin-
ear Control and elsewhere to formulate controllers, we
needed to put our system of interest in to a mathematical
form recognizable to control engineers and researchers.
That is, we had to express the dynamics of the system
according to a set of differential equations and compose
them in to a state space model.

To begin, we used a free-body diagram to discern the
physics of the mechanical system.

Fig. 1: The inverted pendulum on a cart system and
relevant forces [4].

Given this picture, expressions for the forces on the
pendulum can be written as

H = m
d2

dt2
(x+ L sin θ)

V = m(
d2

dt2
(L cos θ) + g)

where H = Σ forces in the horizontal direction, V = Σ
forces in the vertical direction, m = the mass of the
pendulum, θ = the angle of the pendulum from the
vertical, and L = distance from the pendulum’s pivot
to its center of mass.

Next, expressions for all torques around the pendu-
lum’s pivot and all horizontal forces on the cart can be
written as

Iθ̈ = V L sin θ −HL cos θ − cθ̇ (1)

Mẍ = F −H − kẋ (2)

where I = the pendulum’s inertia around its center of
mass (13mL

2 for a uniform rod), M = the mass of the
cart, F = force applied to the cart, and c, k = damping
coefficients for rotation of the pendulum and movement
of cart, respectively.

To obtain a state space model, we needed expres-
sions for higher-order terms in terms of only lower-
order terms. Because we care about cart and pendulum
positions, we must solve the physics equations for ẍ and
θ̈.

Substituting for H and V in 1 and 2 and rearranging
yields[
I +mL2 mL cos θ
mL cos θ M +m

] [
θ̈
ẍ

]
=

[
mLg sin θ − cθ̇

F +mL sin θθ̇2 − kẋ

]
Then solving for θ̈ and ẍ gives[

θ̈
ẍ

]
=

1

d(x1)

[
M +m −mL cos θ
−mL cos θ I +mL2

]
∗

[
mLg sin θ − cθ̇

F +mL sin θθ̇2 − kẋ

]
(3)

where d(x1) = (I +mL2)(M +m)−m2L2cos2θ

This is all that is necessary to express how the system
evolves. These two equations are the basis for our
state space model in terms of the lower-order terms(
θ θ̇ x ẋ

)T
and for the forward-Euler computations

in our MATLAB simulations. Both the Nonlinear con-
troller and the RL make use of this same model.

III. CONTROL SYNTHESIS

A. REINFORCEMENT LEARNING

Since RL is not part of the ECE 6552 syllabus a
brief note about its theoretical underpinnings is included
in the Appendix. An excellent introduction by Sutton
and Barto [1] can also be found online for free. The
content in this section assumes familiarity with basic
terminology associated with RL. We discuss specifics
pertaining to the RL algorithm (Q-Learning) we used,
its implementation and the learning process required to
train an effective controller.

Q-Learning–The Algorithm: We chose to use the
Q-learning algorithm because the Q function includes
action choices as an input. This gives an RL Agent
control over action selection and makes it easier to
introduce Algorithm 2 for action selection. Algorithm
2 supports state space exploration during the learning
process by allowing us to configure (using exploration
probability ε) how often a random action is chosen.

Owing to its Markov Decision Process roots, the
algorithm requires state and action space discretization
which ensures that Q-values must be learned for only
a finite number of state-action pairs. Effectively, the
algorithm implements a Gradient Descent learning step
for the Q-values associated with each state-action pair.

It is interesting to recognize that instead of a dataset,
the Agent executing this algorithm receives training
samples that are determined by its environment (physical
dynamics of the system), the Agent’s initial conditions
(s0, a0) and the Agent’s course of actions a1....an as
its state trajectory evolves (s1...sn). Upon observing
this, we came to think of RL as a form of super-
vised (by the environment) learning conducted online
(1 sample at a time). Given a sufficient number of
samples for a given state-action pair, its Q-Value is
guaranteed to ‘eventually’ converge, which means the
Agent/Controller should continue to get better at keeping
the pendulum upright. From Step 7,8 of Algorithm 1
it is worth noting and easy to imagine that Q-values
for state-action pairs that are adjacent to each other
(in terms of transition probabilities) are dependent upon
each other, so this is how new information propagates
through an Agent’s Q-table. When all new information
is assimilated, the algorithm will approximate the Q
function well, and all Q-values will converge.

Algorithm 1 Q–learning

1: Initialize Q(s, a) randomly
2: for each episode do
3: s← random state
4: for each step in the episode until termination

do
5: Choose a per Action Selection Policy
6: Take action a, observe (r, s′)
7: Q(s, a) ← Q(s, a) + α[r +
γmax a′Q(s′, a′)−Q(s, a)]

8: s← s′

Algorithm 2 Action selection policy

1: n← U[0, 1]
2: if n > ε then
3: Select a with maximum Q value
4: else
5: Select a randomly from available actions

Q-Learning–The Implementation: Q-Learning can be
implemented using a Q-table or a deep neural network.
We developed both implementations, though only the Q-
table implementation worked successfully. Much easier
to debug and visualize than black-box neural nets, a
literal table was much less problematic. All our code was
developed in MATLAB and uses standard MATLAB
toolboxes.

Q-Table: The Q-table is a look-up table indexed
by (s,a) that contains randomly initialized Q values
for each state-action pair. The learning steps described
in the Algorithm are implemented every time the
environment gives feedback (r, s′) to the Agent. To set
up the learning problem, the concept of an absorbent
state is necessary. An absorbent state means that the
system has gone into an unacceptable state and the
simulation (or actual physical system) must terminated
(and reset) to an acceptable initial condition. Figure
2 depicts a Q-table and how the absorbent (badly
terminated) states affect the other states. In our case,
we considered “the cliff” to be the pendulum exceeding

Fig. 2: Depiction of absorbing states (The Cliff) influ-
encing the optimal action selection policy. [1]

|θ| > π/2 or |θ̇| > π/4 rad s−1

State Space Discretization: Two states (θ, θ̇) are
discretized in our implementation. While we found
that RL could also additionally learn to keep the cart’s
traversal and velocity (x, ẋ) within some bounds, we
did not pursue additional states under constraint because
they were only peripherally related to our motivating
questions. The coarsest discretization which allowed the
controller to learn is given below. We eventually moved
on to finer-grained state discretization for comparative
analysis.

Discretization for θ (4 bins)

−π/2 −π/4 0 π/4 π/2

Discretization for θ̇ (2 bins)

−π/4 0 π/4

Action Space Discretization: The force applied to the
cart was the only action. We chose pairs of forces, which
had equal magnitude but opposing direction (sign). The
most bare-bones configuration that met the objective
included only F = −10N, 10N . We eventually moved
to more granular and numerous action choices for com-
parative analysis.

Together this means our initial RL Controller had to
learn Q values for 4×2 states × 2 actions = 16 different
state-action pairs.

Rewards: We initially tried ‘Lyapunov-like’ reward
functions (−θ2,−θ2− θ̇2), but upon reading an analysis
of the problem in [1] we found an approach suggesting a
reward of 0 or -1 depending upon whether the pendulum
had survived (not fallen over) or entered an absorbent
state (below the horizontal). This reward policy was
attractive because it did not make any assumptions about
the system. This ‘minimalist’ reward function suffices,
since the negative reward gathered at absorbent states
propagates back up to other states which are closer to
the absorbent ones (in terms of transition probability)
because of the nature of the Q-learning update rule (Step
7. Algorithm 1). Some of our eventual results (discussed
later) are exciting particularly because of this system-
agnostic reward policy.

Training A Q-Learner: Our standard training config-
uration included individual simulation episodes limited
to 300 seconds followed by a successful (reward =0)
termination. We used an initial ε = 0.5 and let it
decay exponentially, a learning rate α = 0.25, and a
discounting factor, γ, which balances the relative im-

portance of immediate rewards versus future cumulative
rewards, of 0.8. In this configuration, the RL Controller
usually learned how to hold the pendulum upright for
an episode after 50 to 70 episodes of learning. To
speed convergence, we began training by initializing the
system only marginally away from the upright position,
increasing that margin as the learner mastered the last.
Also for speed, we initialized the Q-Table to 0 rather
than randomly, since our reward function should even-
tually push any entry to [0,-1] anyway.

While training numerous models with different levels
of state discretization, we discovered several ways to
hasten learning which have meaningful implications for
real world systems (but may not be feasible for all
systems). For example, if the controller can survive (the
pendulum does not drop below |π/2|) for 20-30 real
seconds, then it is almost certain to survive for 300
seconds. So, in order to save compute time, we restricted
episode length to 20 seconds. We also noticed that
randomly initializing each episode with θ, θ̇ spanning
the state space rather than relying upon the ‘exploration’
from Algorithm 2 could achieve stable operation five
times faster than the initial scheme. So, we turned off
Algorithm 2 by setting ε = 0. We also varied α but did
notice a substantial influence on learning rate. When
dealing with more complex systems, some (or all) of
these intuitions about state space exploration could save
hours of training time.

The final RL controller demonstrated during our pre-
sentation was based on 77 unique states (θ, θ̇) and 11
different Actions (10 non-zero forces of opposing signs
for 5 different magnitudes and a 0 force), which gives
a Q-table with 847 Q-values. Although we trained it
extensively, it converged to stable operation within about
45 episodes limited to a maximum of 20 seconds of real
time per simulation. This underscores the power of this
technique.

B. NONLINEAR CONTROL

To develop a nonlinear controller, we explored the
mathematics, the theory upon which nonlinear control
is founded, in the context of our system of interest.

To begin, we had to go one step beyond the two dif-
ferential equations in 3 to formulate a state-space model
in the familiar affine form with an output expressing the
goal. Letting

(
θ θ̇ x ẋ

)T
=
(
x1 x2 x3 x4

)T
,

letting F be the control input u, and expressing the goal
as driving y = θ to zero, we get the result 4 at the top
of the next page.

Now the begins the road to a controller.

Feedback Linearization

The idea here is that the output dynamics η, which
are the output (y) and its derivatives, should be forced

to zero as time advances. After taking the derivatives,
we can rewrite the output dynamics in a linear form as

η̇ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0


︸ ︷︷ ︸

F∈Rγ×γ

η +


0
0
0
...
1


︸︷︷︸

G∈Rγ×1

v

where γ is the “relative degree” of the system and v is
the control input to this new system.

Choosing v = −
[
α1 α2 . . . αγ

]
η, where αx

are the coefficients of a polynomial sγ + αγ−1s
γ−1 +

. . . α1s + α0 with zeros in the open left-half plane,
makes the system in to the form η̇ = Aη, where all of
A’s eigenvalues have negative real part. In other words,
choosing v in this way ensures the output dynamics are
globally exponentially stable.

If we choose u such that it cancels the nonlinearities
of the system and enforces these linear output dynamics,
then we can achieve stability. Or that’s the idea.

So, let’s take those derivatives.

y = h(x) = x1 = η1

ẏ =
∂h(x)

∂x
ẋ =

[
1 0 0 0

]
(f(x) + g(x)u)

= x2︸︷︷︸
Lfh(x)=η2

+ 0︸︷︷︸
Lgh(x)

u

Since Lgh(x) is not nonzero, we have to differentiate
again

ÿ =
∂Lfh(x)

∂x
ẋ =

[
0 1 0 0

]
(f(x) + g(x)u)

= f2(x)︸ ︷︷ ︸
L2
fh(x)

+ g2(x)︸ ︷︷ ︸
LgLfh(x)

u

Now, since we have reached a nonzero coefficient of u
in two differentiations, we know the relative degree (γ)
of the system is 2 and can formulate the control law that
enforces linear, exponentially stable output dynamics:

u =
1

LgLfh(x)
(−L2

fh(x) + v)

where, as stated earlier, v is chosen such that the
output dynamics are stable. v = −

[
1 2

]
η = −y −

2ẏ = −x1−2x2 works, and the control law is complete.


ẋ1
ẋ2
ẋ3
ẋ4

 =


x2

1
d(x1)

(M +m)(mLg sinx1 − cx2) + 1
d(x1)

(−mL cosx1)(mL sinx1x
2
2 − kx4

x4
1

d(x1)
(−mL cosx1)(mL sinx1 − cx2) + 1

d(x1)
(I +mL2)(mL sinx1x

2
2 − kx4


︸ ︷︷ ︸

f(x)

+


0

−mL cos x1

d(x1)

0
I+mL2

d(x1)


︸ ︷︷ ︸

g(x)

u (4)

y = x1

Zero Dynamics

But that is not the whole story. The law guarantees the
output dynamics are exponentially stable, but the system
as a whole may still not be. Unless the system is full-
state linearizable (γ = n), there are other dynamics at
play that the controller can not affect. These are called
the “zero dynamics”, z, and are “orthogonal” to the
control input. That is Dz(x)g(x) ≡ 0.

Frobenius’ theorem establishes the existence of more
than n − γ solutions to that condition, so we can find
enough of them to complete a transformation of coordi-
nates from the original system to the (η, z) domain. It
is not necessary to always find these solutions, but they
can be informative, so we have done so.

Since g(x) is 0 at its first and third indices, a natural
choice of z(x) might be

[
x1 x3

]T
. This yields

Φ(x) =
[
η
]

=


x1
x2
x1
x3

→ DΦ(x) =


1 0 0 0
0 1 0 0
1 0 0 0
0 0 1 0


But since DΦ(x) is not full rank, Φ(x) can not

be a diffeomorphism, so this is not a valid coordinate
transformation! On a second attempt, choose z(x) =[
x3 (I +mL2)x2 + (mL cosx1)x4

]T
This yields

DΦ(x) =

 1 0 0 0
0 1 0 0
0 0 1 0

−mLx4 sinx1x2 (I + mL2) 0 mL cosx1


which is full rank everywhere cosx1 6= 0, that is θ ∈

(−π/2, π/2), the entire upward-facing region.
Now, since we know η → 0, we know the only thing

left is whatever evolution the system is undergoing or-
thogonal to the control input. That is, we have stabilized
the system (exponentially) to the zero dynamics. So what
do those dynamics do as time advances? A bit of algebra
yields

lim
t→∞

ż =
∂z

∂x
ẋ

∣∣∣∣
η=0

=

[
x4
0

]
That is, ż1, the position of the system keeps changing

by x4, the velocity, and ż2, which is related to velocity,

goes to zero. So we expect the controller to drive
acceleration to zero and balance the pendulum in an
inertial frame going a constant velocity.

Control Lyapunov Functions

But that’s not all! It is possible too to control the
system with a Control Lyapunov Function (CLF), and
for feedback linearizable systems, finding the right Lya-
punov function is formulaic.

We know that the output dynamics of the system are
given by a linear system. Let the Hurwitz matrix that
keeps that system stable be called FCL. A solution, P =
PT > 0, to the Continuous Time Lyapunov Equation

FTCLP + PFCL = −Q

where Q is also positive definite and symmetric, yields
a CLF V (x) = η(x)TPη(x).

For our system, a valid FCL, the one that puts both
eigenvalues at -1, is given by[

0 1
−1 −2

]
Choosing Q to be a multiple of the identity matrix, a

solution to the CTLE is given by

Q =

[
2 0
0 2

]
→ P =

[
3 1
1 1

]
This gives

V (x) =
[
x1 x2

] [3 1
1 1

] [
x1
x2

]
= 3x21 + 2x1x2 + x22

We know that for a Lyapunov function to prove
exponential stability, it (1) must be between two class-k
functions in ‖η‖ and (2) must have a derivative less than
some negative constant times itself. The first condition
is clearly true in our case since 1

2 (x21 + x22) < V (x) <
100(x21 + x22). The second relies upon the control input
because

V̇ (x) =
∂V (x)

∂x
ẋ =

[
6x1 + 2x2 2x1 + 2x2 0 0

]
ẋ

= (6x1 + 2x2)x2 + (2x1 + 2x2)f2(x)+

(2x1 + 2x2)g2(x)u <
λmin(Q)

λmax(P)
∗ V (x)

We can find the “best” control law that satisfies this
condition by formulating the problem as a quadratic
program (QP) with a cost function that encodes some
notion of what it means for a controller to be good.
Often, the best controller is the one that achieves its
aim with the least effort, so we can write the QP as

u∗(x) = argmin
u∈Rm

uTu

s.t. LfV (x) + LgV (x)u < −αV (x)

This is not the only possible cost function. Actu-
ally, it is often preferrable to minimize vT v instead,
transforming to a QP in u by the relationship u =
A−1(x)(−L∗fh(x)). But we tried that for this problem
and found no benefit, and it is much easier solve uTu
alone because that QP has a closed-form solution given
by (when φ0 and φ1 are scalar)

u∗(x) =

{
−φ0

φ1 , if φ0 > 0

0, otherwise

where φ0 = LfV (x) + αV (x) and φ1 = LgV (x).
This controller may be considered better than that

derived by simple feedback linearization because it en-
codes the notion of minimum effort. Whereas a feedback
linearizing controller will always override the system’s
nonlinearities to enforce η → 0, the CLF-based con-
troller will drops to zero when the dynamics of the
system work in its favor.

In our case, the dynamics never work in favor of
the control objective, so the two analytically-derived
controllers act nearly exactly the same. So in our later
analysis we have used the CLF-based controller exclu-
sively. All references to “the nonlinear controller” refer
to this one.

IV. RESULTS

We compared the analytically-derived controller and
reinforcement-learned controllers according to two met-
rics: Resilience to noise and efficiency.

All simulations were performed using a 1 kg cart and
a 0.1 kg pendulum of length 0.5 meters. The results
were collected from simulated episodes limited to a
maximum of 300 seconds of real time. The timestep
used for forward-Euler integration was 0.01 seconds.

Simulation Videos:
• Reinforcement Learner-based Controller
• Non-Linear, CLF-based Controller
• 360 degree visualization of Learned Q-Function

alongside negative of the derived Lyapunov Func-
tion.

The first result is unsurprising: It is clear that the
CLF controller is more efficient than the RL controller.
This is supported by 100 simulations of each controller,
which show the magnitude of the average force utilized
to balance the inverted pendulum is 1.8827 Newtons
for the CLF controller and 4.3881 Newtons for an RL
controller with 11 discrete forces. This gap is partially
due to that discretization and the associated quantization
noise, and, as we have seen that less-fine discretization
yield worse results, we postulate that finer discretization
might shrink the gap. But the CLF also does better than
the RL because the RL hasn’t been trained for infinite
time and so has imperfect Q-values. Since optimal Q-
values become more time-consuming to obtain as the
size of the state-space is increased, there is a tradeoff
between good Q-values and a large action space.

The second result is that noise, specifically process
noise, is handled better by the RL controller than by
the CLF controller. Figure 3 shows the average mean-
squared-error of (θ) for both controllers over different
values of β, where β is the scale of a noise-term added
at model update-steps as

x = x+ ẋ ∗ dt+ β ∗ randn ∗ scales

where scales is a vector of arbitrary weights[
π
4

π
18 0.2 0.5

]T
corresponding to the state(

θ θ̇ x ẋ
)T

and randn is a random number from
a normal distribution with mean of 0 and standard
deviation of 1.

Fig. 3: MSE (θ) vs Process Noise

Figure 5 depicts the average episode duration, that
is how long a simulation survives, versus β. In both
cases, the CLF-based controller fares better under little

https://youtu.be/P_baYITm0wM
https://youtu.be/AypccMSNzDU
https://youtu.be/P0fyKYfRYXI
https://youtu.be/P0fyKYfRYXI
https://youtu.be/P0fyKYfRYXI

Fig. 4: The Q-values and -V plotted side by side over the state space (θ, θ̇)

noise, but its performance degrades faster than the RL
controller’s as beta increases. A possible explanation for
this, is that the RL controller discretizes the state space
into bins, bins that are likely to describe the system’s
evolution plus noise, whereas the nonlinear controller
operates entirely precisely.

Fig. 5: Average Episode Duration(s) vs Process Noise

Lastly, perhaps the most compelling result from our
comparative study is that the Q-values learned via RL
resemble the Lyapunov Function derived using the meth-
ods of Nonlinear Analysis as shown in Figure 4. If this
generalizes beyond our simple-system, curve-fitting a
function to an RL’s Q-table could be a powerful tool
to guide design CLF-based controllers for systems that
resist analytical tractablility. The best part of this result
for us was that it emerged from a system-agnostic reward
scheme: The learner knew nothing of the natural envi-
ronment aside from the fact that letting the pendulum fall
was bad, yet it was able to distribute that information
over the whole state-space in such a way that its notion
of “goodness” for a state is related to that state’s energy.

This suggests that Lyapunov Stability theory is a truth
commonly reflected in nature.

V. CONCLUSIONS

With a very simple reward scheme, the RL controller
converges to an optimal value function, which makes
Reinforcement Learning-based implementation attrac-
tive. The value function generated by our Reinforcement
learning scheme takes the shape of Lyapunov function
(Figure 4) without any coercion on our part.

Because the Reinforcement Learner is based upon
bucketing and must learn to withstand quantization noise
by design, the RL controller is more robust to noise. But
in less-noisy environs, this advantage quickly turns to
disadvantage, as an analytically-derived controller is far
more efficient and accurate.

Thus, we can conclude that analytical approaches are
superior in domains requiring accuracy and efficiency,
but RL-based methods are powerful under noisy condi-
tions and, since they require no deep analysis, can be
useful in domains where such analysis is impractical.

Moving beyond a mere comparison of these ap-
proaches, we would like to suggest they can be used
conjointly to solve a single problem. Particularly, for
control objectives, at least those requiring stabilization
to an energetically-critical point, it appears possible to
find a CLF by curve-fitting the Q-values of an RL. Such
a CLF could be used to very simply find a controller for
the system and would not require any of the complicated
analysis or guessing involved in deriving one directly.
Future work might focus on the questions like “Do
our observations generalize to higher dimensional, more
complex systems?” or “What kinds of control objectives
can be achieved by this hybrid approach?”

REFERENCES

[1] Sutton, Richard S and Barto, Andrew G, Introduction to rein-
forcement learning,vol. 135, MIT Press Cambridge, 1998.

[2] MistWiz (Wikimedia Commons),Markov Decision Process
example, 2006, https://commons.wikimedia.org/
wiki/File:Markov_Decision_Process_example.
png

[3] Khalil, H. K., & Grizzle, J. W. (1996). Nonlinear systems (Vol.
3). New Jersey: Prentice hall.

[4] Bugeja, M. (2003, September). Non-linear swing-
up and stabilizing control of an inverted pendulum
system. In EUROCON 2003. Computer as a Tool. The
IEEE Region 8 (Vol. 2, pp. 437-441). IEEE. https:
//www.researchgate.net/publication/4045336_
Non-linear_swing-up_and_stabilizing_
control_of_an_inverted_pendulum_system

APPENDIX

This section provides a summary of our understand-
ing of the theoretical underpinnings of Reinforcement
Learning. It is included here for completeness because
it is not part of the ECE 6552 Syllabus. For interested
readers, an excellent textbook by Sutton and Barto [1]
can also be found online for free. Here we discuss the
basic framework of Markov Decision Processes, relate
them to reward maximization problems and discuss how
the Bellman Inequality helps arrive at recursive forms
that can be used to determine optimal solutions in a
computationally feasible manner. We end with describ-
ing how Reinforcement Learning descends from these
principles to provide approximate solutions for very
large/not fully observable Markov Decision Processes.

Markov Decision Processes provide a modeling
framework for decision-making when facing stochastic
outcomes. A decision making agent can transition its
way across discrete states based on its choice of actions
while accumulating rewards associated with state transi-
tions. Markov Decision Processes adhere to the Markov
Property, which ensures that the process is memory
less i.e Transition from state s to s′ via action a has
probability Pa(s, s′) and is independent of preceding
states or actions.

Figure 6 illustrates a Markov Decision Process viewed
by an agent as a a collection of states S. At time t
in state st, the agent decides what the best action at.
The environment takes < st, at > and produces a new
state s′. This step simulates the world responding to
the agent’s action a and is accompanied by a reward
r(st, at) ∈ R, The reward r(st, at) defines how good
the decision (to choose at) was. R is the sum of rewards
given a specific sequence of selected actions based on
a policy π given by Eq. 5. An agent focused on reward
maximization will try to find an optimal policy π∗,
which maximizes R.

R(π) =

∞∑
t=0

R(st, at) (5)

Fig. 6: Transition diagram for a small Markov decision
process [2]

Markov Decision Processes provide a powerful frame-
work for solving stochastic discrete control problems.
However, their abstract form exposes some practical
problems when an agent starts seeking out optimal
policies to maximize reward.

Reward Accumulation and the Discounting Factor γ:
Non-terminating sequences of actions and rewards can
lead to reward accumulation approaching infinity over
the lifetime of the process even if the goal is not
achieved. This problem can manifest if there is a small
reward for taking no action and staying in the same
state. The Reward Accumulation problem is solved
with the introduction of a discounting factor γ < 1,
which guarantees that R(π) will converge per Eq. 6.

R(π) =

∞∑
t=0

γtR(st, at) (6)

The following functions capture the notions of total
reward while accounting for the probabilistic nature of
Markov Decision Processes.

Value Function(V π(s)): Represents the expected
value of the long term return associated with a state s
when acting according to a policy π. Described by Eq.
7

V π(s) = Eπ{
∞∑
k=0

γkrt+k+1|st = s} (7)

Q-Function(Qπ(s, a)): Represents the Expected value
of the cumulative return associated with performing
action a ∈ R and in subsequent states s ∈ S. Described
by Eq. 8

Qπ(s, a) = Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = a} (8)

The Q-function encodes the rewards associated with
following a certain policy at a certain point as well as

https://commons.wikimedia.org/wiki/File:Markov_Decision_Process_example.png
https://commons.wikimedia.org/wiki/File:Markov_Decision_Process_example.png
https://commons.wikimedia.org/wiki/File:Markov_Decision_Process_example.png
https://www.researchgate.net/publication/4045336_Non-linear_swing-up_and_stabilizing_control_of_an_inverted_pendulum_system
https://www.researchgate.net/publication/4045336_Non-linear_swing-up_and_stabilizing_control_of_an_inverted_pendulum_system
https://www.researchgate.net/publication/4045336_Non-linear_swing-up_and_stabilizing_control_of_an_inverted_pendulum_system
https://www.researchgate.net/publication/4045336_Non-linear_swing-up_and_stabilizing_control_of_an_inverted_pendulum_system

those from going off-policy at each state. As we will
see later, this is crucial for Reinforcement Learning.
Pursuing maximal reward will lead an agent to optimal
policies π∗ which maximize for Q and V functions.
The Markov property(memoryless-ness) allows relating
optimal Q and V functions to the Bellman optimality
equation [1] and a recursive relationship between V (s)
to V (s′) allows the unraveling of V as shown below

V π(s) = Eπ {Rt|st = s}

V π(s) = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣st = s

}

V π(s) = Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2

∣∣∣st+1 = s′

}

V π(s) =
∑
a

π(s, a)
∑
a

π(s, a)
∑
s′

Pass′(Rass′+

γEπ(

∞∑
k=0

γkrt+k+2

∣∣∣st+1 = s′))

V π(s) =
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γV π(s′)] (9)

Where P is the probability of transitioning from s to
s′ when taking action a and R is the return associated
with doing the same. The Bellman equation for the Q-
functions is as follows:

Qπ(s, a) = Eπ

{
rt+1 + γV π(st+1)

∣∣∣st = s, at = a
}

(10)
The solution to the reward maximization problem can

be determined exactly when the entire Markov Decision
Process is known. When this is not the case, only an
approximate solution is possible. This can happen when
a Markov Decision Process is large enough that com-
plete knowledge is not practically possible to store.In
such cases learning an approximate solution comes into
play. This is called Reinforcement Learning.

With the assumption that the agent has an incom-
plete representation of the Markov Decision Process,
it begins to explore the state space by interacting with
the environment, traversing the state space and getting
rewards. State Space exploration is necessary to avoid
local maxima and achieving it requires exploring previ-
ous unknown spaces that are sub-optimal according to
current policy. This requirement forms the basis of most
Reinforcement Learning algorithms.

By discovering the optimal Q function Q∗ using Eq.
10 we can recover the optimal policy by picking actions
which maximize Q in each state. The substructure of
Eq. 10 opens the door to iterative techniques for finding
the optimal Q Function.

	INTRODUCTION
	THE INVERTED PENDULUM ON A CART
	CONTROL SYNTHESIS
	REINFORCEMENT LEARNING
	NONLINEAR CONTROL

	RESULTS
	CONCLUSIONS
	References

